Influence of Strain on Dynamic Viscoelastic Properties of Swelled (H2O) and Biomineralized (CaCO3) PVP-CMC Hydrogels
نویسندگان
چکیده
This paper reports the rheological behavior of swelled and mineralized hydrogel prepared using polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) hydrogel as base polymer. Herein, the bio-mineral calcium carbonate (CaCO3) was incorporated into the hydrogel using simple liquid diffusion method. The morphology of the swelled and mineralized hydrogel was analyzed through scanning electron microscopy. Further, the normalized time of absorptivity was identified from the time dependent absorptivity behavior of calcite and water filled PVP-CMC hydrogel. The effect of the biomineral (CaCO3) and water on the dynamic viscoelastic properties, after penetrating inside the hydrogel matrix has been evaluated. The frequency sweep at 1 and 10 % strain and also strain sweep measurement were performed to determine the frequency and strain dependent viscoelastic moduli G’ and G” of both swelled and mineralized hydrogel. At higher strain the both moduli showed significant change over wide range of angular frequency region and the nature of mineralized polymer composites (MPC) turned from elastic to viscous. Based on the observed basic properties, MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder and water swelled hydrogel can be acclaimed as a scaffold for burned wound dressing.
منابع مشابه
Effect of Strain on Viscoelastic Behavior of PVP-CMC Based Medicated Hydrogels
PVP-CMC and PVP-CMC-BA are designated as medicated hydrogels which are elastic in nature like other gels and solids. This present work was focused on the effect of strain on viscoelastic behavior of these medicated hydrogels. Dynamic frequency sweep test at 10% strain and dynamic strain sweep tests at different angular frequencies were performed on these hydrogels. Freshly prepared hydrogels an...
متن کاملInfluence of temperature, pH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVP–CMC hydrogel
ABSTRACT Biomaterials having stimuli response are interesting in the biomedical field. This paper reports about swelling response and internalstructural of biomineralized (CaCO3) polyvinylpyrrolidone (PVP) carboxymethylcellulose (CMC) hydrogel having various thicknesses (0.1-0.4 mm). Samples were tested in aqueous solution using temperature ranges from 10 to 40 °C; pH varies from 4 to 9, time 6...
متن کاملMineralized polymer composites as biogenic bone substitute material
Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bonebonding potential of the inorganic phase...
متن کاملPolymeric Biomaterial Based Hydrogels for Biomedical Applications
This paper focuses on the significant properties of hydrogels prepared with polymeric biomaterials: solely biopolymers (gelatin (G) and sodium alginate (SA) as base polymer) or in combination with synthetic and bio polymers (polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC)) for biomedical application. Four kinds of hydrogels: G/SA, G/SA/SB (without and with seabuckthron oil (SB)) and...
متن کاملViscoelastic Properties of Polyacrylamide Nanocomposite Hydrogels Prepared in Electrolyte Media: Effect of Gelant Volume
In this work, nanocomposite (NC) hydrogels based on polyacrylamide/chromium triacetate were prepared at different reaction mixture (gelant) volumes and their crosslinking process and viscoelastic behaviors were studied. The X-ray diffraction (XRD) patterns taken from the NC hydrogels containing laponite nanoparticles did not show any distinct characteristic basal reflection for all of the NC hy...
متن کامل